Thermo-Mechanical Behaviour of Multi-Layered Ceramic Systems for SOFCs
Alessia Masini, Filip Siska, Oldrich Sevecek, Zdeněk Chlup and Ivo Dlouhý
Institute of Physics of Materials (IPM) AS CR, Získova 22, 616 62 Brno, Czech Republic

ABSTRACT
SOFCs have to withstand considerable mechanical and thermal stresses during production and especially during operation. Mechanical failure of one cell is enough to damage the whole stack, threatening the lifetime and efficiency of the entire system. Thus, it is of high importance to gain knowledge on the mechanical properties of the cell, improving the reliability and durability of SOFC technology.
In this study, the overall behaviour of an electrolyte supported cell has been investigated. Destructive and non-destructive tests have been performed. Results show that the elastic moduli of the cell continuously decreases with the increasing number of layers.

INTRODUCTION
SOFCs opened a way for a necessary revolution in the power generation industry; hence, the importance of the development and improvement of these devices.
- **Focus**: Layered structure of SOCs
- **Goal**: Investigation of the overall elastic behaviour of the MEA

Overall properties of MEA (Membrane Electrode Assembly) are affected by constraints arising between layers, co-sintering effects and interfaces.
- **Methodology**: Layers added one by one
 - Destructive and non-destructive tests
 - Comparison of the behaviour between consecutive samples
 - Laminate theory

MATERIALS AND METHODS

Stack

Components:
- Air Electrode
- Electrolyte
- Fuel Electrode
- Metal Sheet
- Repetition Units

Room temperature

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC0</td>
<td>Electrolyte</td>
</tr>
<tr>
<td>SOC1</td>
<td>Electrolyte + GDC Barrier</td>
</tr>
<tr>
<td>SOC2</td>
<td>Electrolyte + GDC + Fuel Electrode</td>
</tr>
<tr>
<td>SOC3</td>
<td>Electrolyte + GDC + Electrodes</td>
</tr>
</tbody>
</table>

- **Impulse Excitation Technique (IET)**
 - Device: IMCE NV, Genk, Belgium
 - Samples: Rectangular bars (13 x 5 x 1) mm
- **Three-Point Bending test (3PB)**
 - Device: INSTRON 8862 Norwood, MA, USA
 - Samples: Rectangular bars (7 x 1) mm, 16 mm span
- **Tensile test**
 - Device: INSTRON 8862 Norwood, MA, USA
 - Samples: Bone shaped, 50 mm gauge

RESULTS

High temperature

- **Impulse Excitation Technique**
- **Layer Properties - Laminate Theory**

CONCLUSIONS

- Continuous decrease in Elastic moduls when adding layers to the electrolyte;
- Behaviour vs temperature getting almost constant with increasing number of layers;
- Good agreement between IET and 3PB results and between all the results for the electrolyte;
- Orthotropic behaviour of MEA observed
- Elastic Modulus of individual layers derivat-ed from tensile test results, through laminate theory principles.

ACKNOWLEDGEMENTS

The project leading to this application has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement no 642557 (CoACH) and The Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300 (GrInHy).
The participation to this conference has been financially supported by ACerS Engineering Ceramics Division.

CONTACTS
Alessia Masini
Institute of Physics of Materials AS CR, Brno
Czech Republic
e-mail: masini@ipm.cz
phone: +420 532 290 336
website: www.ipm.cz