Green Industrial Hydrogen
via Reversible High-Temperature Electrolysis

Ralph Schaper
project manager, Salzgitter Flachstahl GmbH

Berlin, 2016-09-29
Mission Statements:

• Proof of concept in the industrial environment of an integrated iron and steel mill
• Development of a reversible high-temperature electrolyzer towards a marketable product by GrInHy’s project outcomes
• meeting the hydrogen quality standards of the steel industry
GrInHy: Technology

Green Industrial Hydrogen via Reversible High-Temperature Electrolysis (HTE)

- **Technology**
 - At temperature levels of up to 900 °C, stacks of Solid Oxide Cells are producing H2 from steam
 - Highest electrical efficiency by integration of (waste) heat from production processes instead of electricity
 - Possibility of operating in a reversible mode

- **SZ Motivation**
 - Evaluation of the technology readiness level (TRL)
 - Techno-economical analysis of possible business cases besides hydrogen production (e.g. load management, grid balancing)
 - Experience in operating a electrolyzer and verification of meeting high quality standards

- **Project Specifications (ID 700300)**
 - Objective: Manufacturing and operation of an pilot plant of 150 kW\textsubscript{el, AC}
 - Duration: 03/2016 – 02/2019
 - Project Budget: 4.5 million €
GrInHy: Objectives

<table>
<thead>
<tr>
<th>Category</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>proof of reaching an overall electrical efficiency of at least 80 %LHV</td>
</tr>
<tr>
<td>Upscaling</td>
<td>SOEC unit to a power input of 150 kW\textsubscript{AC} and production of 40 Nm3H\textsubscript{2}/h</td>
</tr>
<tr>
<td>Operation</td>
<td>at least 7,000 h of operating the system</td>
</tr>
<tr>
<td>Lifetime</td>
<td>greater than 10,000 h with a degradation rate below 1 %/1,000 h</td>
</tr>
<tr>
<td>Reversible Operation</td>
<td>higher capacity utilization for stronger business cases</td>
</tr>
<tr>
<td>Costs</td>
<td>development of dependable data on system costs and cost reductions</td>
</tr>
<tr>
<td>Exploitation Roadmap</td>
<td>reversible high-temperature electrolyzer as a marketable product</td>
</tr>
</tbody>
</table>
GrInHy: Who we are

The GrInHy consortium consists of 8 partners from 5 different EU countries and is characterized by its interdisciplinary expertise.

These include a technology specialized SME, large industries, university and non-university research organizations.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHy.

www.green-industrial-hydrogen.com