Green Industrial Hydrogen via Reversible High-Temperature Electrolysis

25-07-2017 Konstantin Schwarze / SOFC XV
Introduction
Solid Oxide Cells convert...

... electricity into **hydrogen**

![Diagram of Electrolysis Mode]

- **Steam** ($+\text{CO}_2$) → **Hydrogen** ($+\text{CO}$) → **Heat** → **Electricity**
- **Electricity** → **Oxygen** (O_2) → **Heat** → **Electricity**

Electrolysis Mode

... chemical energy into **electricity** and **heat**

![Diagram of Power & Heat Mode]

- **Fuel** ($-\text{CH}_2$) → **Oxygen** (O_2) → **CO$_2$** & **H$_2$O**
- **Heat** → **Electricity**
One Core - Multiple Products

- Heat and Power for Households
- Power and Heat for Commercial Buildings
- Power for Remote Locations
- Fuels and Gases for Mobility + Industry
RSOC State of the Art
RSOC Cooperation Sunfire / Boeing

Electrolysis Mode – $\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow$ Produce and Store H2

Fuel Cell Mode – $\text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O} \rightarrow$ Use H2 to Produce Power

- **H2 Storage**
 - H2 Compression
 - Potable/Sea Water Inlet
 - Desalination/Deionizer Unit
 - Process Water Storage Tank
 - Sunfire Reversible SOFC Stack

- **Facility Grid**
 - Wind
 - Solar

- **Power in from the Grid During Electrolysis Mode**
 - H2
 - H2O

- **Power Out to the Grid During Fuel Cell Mode**
 - H2
 - H2O

- **RSOFC System**
System Highlights

- Electricity storage for autonomous electricity supply during day and night (PV connected)
- Application: Autonomous power supplies (e.g. islands), smart grids
- 2 x 80 kW SOEC power input and 2x 20 kW SOFC power output (H₂ based)
- Roundtrip efficiency ca. 45%
- Highlights:
 - Worlds first thermally self-sustained SOEC system at representative scale
 - First demonstration of RSOC technology at system level
 - Automatically controlled electricity storage and release → filling level of H₂ vessel
The GrInHy Concept
GrInHy Project

EU funded project (04/2016 - 03/2019)

Objectives:

- Overall electrical efficiency of at least 80 %\(_{\text{LHV}}\)
- Scaling-up the SOEC unit up to 150 kW\(_{\text{el}}\)
- Operation > 7,000 h while meeting hydrogen quality standards of the steel industry
- Integration of a reversible operation mode (fuel cell mode) with natural gas as feedstock
- Integration in a relevant industrial environment
RSOC Integration in an Iron and Steel Work
GrInHy System Layout
RSOC System Layout

- System consists of RSOC Unit and Hydrogen Processing Unit
- RSOC Layout:
RSOC Layout

1440 SOCs
Technical Data RSOC Unit

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>EL Mode</th>
<th>H2-FC Mode</th>
<th>NG-FC Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Power Input</td>
<td>142.9 kW ± 8 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AC Power Output</td>
<td>-</td>
<td>30 kW ± 10 %</td>
<td>25 kW ± 10 %</td>
</tr>
<tr>
<td>H2 Production</td>
<td>40 Nm³/h ± 5 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steam Consumption</td>
<td>45 kg/h ± 2.5 kg/h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H2 Consumption</td>
<td>-</td>
<td>21.3 Nm³/h ± 15 %</td>
<td>-</td>
</tr>
<tr>
<td>NG Consumption</td>
<td>-</td>
<td>-</td>
<td>5.3 Nm³/h ± 15 %</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>50...125 %</td>
<td>30...100 %</td>
<td>30...100 %</td>
</tr>
<tr>
<td>Gross Efficiency AC</td>
<td>84 % ± 2 % points</td>
<td>47 % ± 2 % points</td>
<td>50 % ± 2 % points</td>
</tr>
</tbody>
</table>
Technical Hydrogen Processing Unit

The HPU by BR&T-E compresses and dries the Hydrogen to feed it to the onsite pipeline.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Pressure</td>
<td>20 mbar(g)</td>
</tr>
<tr>
<td>Output Pressure</td>
<td>8 bar(g)</td>
</tr>
<tr>
<td>H2 Output</td>
<td>54 Nm³/h</td>
</tr>
<tr>
<td>H2 Purity</td>
<td>Dew Point: -60 °C</td>
</tr>
<tr>
<td></td>
<td>N₂: < 200 ppmv</td>
</tr>
<tr>
<td></td>
<td>O₂: < 1 ppmv</td>
</tr>
<tr>
<td>AC Nominal Power</td>
<td>20 kW</td>
</tr>
</tbody>
</table>
RSOC Test Results
Lab testing

- Tested Units: GrInHy RSOC + 2 identical commercial prototypes
- Lab tested w/o HPU or integration in other processes
- About 1000 hours testing each
- Relevant load points were established in fully automated operation

→ Very good repeatability has been found
H2-FC Results

+ Power target reached: 30 kW_{AC} @ > 0.7 V/cell, 0.27 A/cm²
+ Gross AC Efficiency 45 %_{LHV} @ full load, 50 %_{LHV} maximum @ part load
+ High fuel utilization > 95%
+ Part load ability achieved
NG-FC Results

+ Power target reached: $25 \text{ kw}_{\text{AC}} @ > 0.7 \text{ V/cell}, 0.23 \text{ A/cm}^2$
+ Gross AC Efficiency $50 \%_{\text{LHV}}$ @ full load, $52 \%_{\text{LHV}}$ maximum @ part load
+ High fuel utilization of $> 85 \%$
+ Part load ability achieved, but at relatively low efficiencies at deep part load
Electrolysis Results

- Hydrogen output targets reached: 40 Nm³/h, including overload (50 Nm³/h) and peak load 200 kW_{AC}
- Gross AC Efficiency 80 %_{LHV} @ full load, > 75 %_{LHV} minimum @ part load and overload
- Systems shows very good operability and dynamics
Conclusion & Acknowledgement
Conclusion

+ High consistency between specification and test results was reached
+ Reaching the typically higher efficiencies in part load seems difficult
+ In Electrolysis mode efficiency is 2 % points lower than predicted

+ Reason for deviation between specs and test results
 1. Thermal losses higher than predicted
 → Next generation hotbox will be more compact an comes with enhanced thermal insulation
 2. Power electronics efficiency only 90 %
 → Bidirectional power electronics with a high dynamic/voltage range operate in suboptimal load points: use of different unidirectional power electronics
 3. Systematic error in power measurement
 → Deviations between high-end lab measurements and more cost efficient online measurement: possibly recalibration needed
Conclusion

+ The prototypes were successfully operated as Electrolyser and Fuel Cell with Hydrogen and Natural Gas

→ It is the world's largest High-Temperature Electrolyser Unit

+ Possible further enhancements elaborated
+ Next step: Long term testing, operation in industrial environment
Acknowledgement

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.
THANK YOU!

ENERGY EVERYWHERE

Konstantin Schwarze
Project Engineer
Large Systems

E: konstantin.schwarze@sunfire.de

sunfire GmbH
Gasanstaltstraße 2
01237 Dresden
Germany

W: www.sunfire.de